Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7045550 | Applied Thermal Engineering | 2018 | 8 Pages |
Abstract
Over the past decade, the micro-thermophotovoltaic (MTPV) system has aroused widely public attention. Micro-combustor is an important part, which can determine the working performance of this micro-power generator. In this paper, experimental investigations as well as a three-dimensional CFD simulation have been carried out to study the performance of propane/air premixed combustion in a new kind of cross-plate micro-planar combustor. Benefited from the heat transfer enhancement by the setting up of cross-plate, the average wall temperature of the new combustor is increased by more than 90â¯K, which results in the growth of radiation efficiency. Besides, the blowout limit is apparently extended in the cross-plate combustor. Compared to the single-channel combustor, the blowout limit of propane/air in the cross-plate combustor can be raised by 0.4â¯m/s at equivalence ratio 0.7. It is also found that the cross-plate length can significantly affect the flame shape in the micro-channel and temperature distribution of the external wall. In contrast, the dimensionless plate length of 5/9 is suggested as the optimal structure parameter for the micro-combustor, which is due to the highest radiation efficiency.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
Aikun Tang, Jiang Deng, Yiming Xu, Jianfeng Pan, Tao Cai,