Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7046113 | Applied Thermal Engineering | 2018 | 11 Pages |
Abstract
In this study, the flow boiling heat transfer characteristics of R-1234ze(E) and R-134a in plate heat exchangers with different Chevron angles are measured and analyzed as a function of the mass flux, saturation temperature, vapor quality, and heat flux. The effect of the mass flux on the heat transfer and pressure drop of R-1234ze(E) is substantial. The heat transfer coefficient of R-1234ze(E) for a Chevron angle of 60° is approximately 3.7 times higher than that for a Chevron angle of 30° at high vapor qualities owing to the intensified turbulent flow. Moreover, for a Chevron angle of 60°, the average heat transfer coefficient of R-1234ze(E) is on average 4.7% higher than that of R-134a due to its higher equivalent Reynolds number. However, the average pressure drop of R-1234ze(E) is higher than that of R-134a owing to the lower vapor density of R-1234ze(E). Finally, the correlations for the heat transfer and pressure drop of R-1234ze(E) are developed in the plate heat exchangers with different Chevron angles.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
Dongwoo Kim, DongChan Lee, Dong Soo Jang, Yongseok Jeon, Yongchan Kim,