Article ID Journal Published Year Pages File Type
7046150 Applied Thermal Engineering 2018 23 Pages PDF
Abstract
The new knock index proposed analyses the frequency spectrum of the pressure signal in two locations, i.e. near the maximum heat release and near the end of combustion, by using the fast Fourier transform and a window function, and it is compared with the classical MAPO definition, which consists on finding the maximum pressure oscillation in the time domain. Both indices have been implemented online in a four-stroke SI engine and its performance is illustrated by using a classical knock control strategy. Results obtained under different operating conditions demonstrate that the improved knock index definition can substantially reduce the variability of the spark advance angle control, avoiding strong knocking events and reducing engine vibration.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,