Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7047733 | Applied Thermal Engineering | 2016 | 7 Pages |
Abstract
The present work focused on the preparation and characterization of a new thermal storage material applied in thermal energy management. X-ray diffraction (XRD) results showed that Expanded Perlite (EP) has a good thermal stability varying from 300 °C to 900 °C. Morphology of scanning electron microscopy (SEM) revealed that sodium nitrate is uniformly encapsulated and embedded in the three-dimensional network structure of EP. Fourier transform infrared (FT-IR) spectroscopy indicated that the EP is physically combined with the nitrate salt. Thermo-gravimetric analysis (TGA) and differential Scanning Calorimeter (DSC) indicated that the composites have good thermal stability. The adsorption capacity of loose EP was 213.21%. When the EP mass fraction varying from 10% to 60%, thermal conductivity decreased with the content of EP increased, and the highest thermal conductivity is 1.14 W (m K)â1 at 300 °C. SEM revealed the network structure of EP provided thermal conduction paths which enhanced the thermal conductivity of the composites. All results indicated that EP could be a good adsorption material to be applied in the thermal storage fields.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
Ruguang Li, Jiaoqun Zhu, Weibing Zhou, Xiaomin Cheng, Yuanyuan Li,