Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7050940 | European Journal of Mechanics - B/Fluids | 2018 | 10 Pages |
Abstract
The rate of change ε(k,t)=âE(k,t)âât of the energy spectrum E(k,t) of a weak turbulence in a system with a decay dispersion relation is investigated with particular interests in the initial stage of evolution such as the first several tens of periods. The theoretical predictions given by the kinetic equation of Hasselmann and that of Janssen which have been derived by the weak turbulence theory are compared with the results of direct numerical simulation (DNS) with a great accuracy. It is shown that ε(k,t) predicted by Janssen's equation correctly reproduces the rapid variation of ε(k,t) with the linear time-scale which is observed in DNS, while that predicted by Hasselmann's equation does not. It is also shown that the transient behavior of the asymptotic approach of Janssen's ε(k,t) to Hasselmann's one strongly depends on the wavenumber. For wavenumbers smaller than the spectral peak, the approach is exponential, while for wavenumbers larger than the spectral peak it contains a damped oscillation whose amplitude decays in time like 1ât. A reasonable explanation for the origin of this damped oscillation is given in terms of the frequency mismatch of the three-wave “sum” interactions.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
Mitsuhiro Tanaka, Naoto Yokoyama,