Article ID Journal Published Year Pages File Type
7058876 International Journal of Heat and Mass Transfer 2013 10 Pages PDF
Abstract
Dual-phase-lagging (DPL) equation with temperature jump boundary condition shows promising for analyzing nano heat conduction. For solving it, development of higher-order accurate and unconditionally stable (no restriction on the mesh ratio) numerical schemes is important. Because the grid size may be very small at nano-scale, using a higher-order accurate scheme will allow us to choose a relative coarse grid and obtain a reasonable solution. For this purpose, in this article we present a higher-order accurate and unconditionally stable compact finite difference scheme based on the ratio of relaxation times (0 ⩽ B ⩽ 1 and B > 1). The method is illustrated by three numerical examples including a 2D case.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,