Article ID Journal Published Year Pages File Type
70698 Journal of Molecular Catalysis B: Enzymatic 2009 5 Pages PDF
Abstract

The accumulation of partial glycerides such as monoglyceride (MG) and diglyceride (DG) is one of the rate-limiting steps in plant oil methanolysis catalyzed by Rhizopus oryzae producing triacylglycerol lipase. To convert partial glycerides efficiently into their corresponding methyl esters (MEs), we attempted to use a mono- and diacylglycerol lipase (mdlB) derived from Aspergillus oryzae. By considering cost efficiency, R. oryzae and recombinant mdlB-producing A. oryzae were immobilized independently within polyurethane foam biomass support particles and directly utilized as a whole-cell biocatalyst. The mdlB-producing A. oryzae effectively exhibited substrate specificity toward MG and DG and was then used for the methanolysis of intermediate products (approximately 82% ME), which were produced using R. oryzae. In the presence of 5% water, the use of mdlB-producing A. oryzae resulted in less than 0.1% of MG and DG, whereas a considerable amount of triglyceride was present in the final reaction mixture. On the basis of these results, we developed a packed-bed reactor (PBR) system, which consists of the first column with R. oryzae and the second column containing both R. oryzae and mdlB-producing A. oryzae. Ten repeated-batch methanolysis cycles in the PBR maintained a high ME content of over 90% with MG and DG at 0.08–0.69 and 0.22–1.45%, respectively, indicating that the PBR system can be used for long-term repeated-batch methanolysis with partial glycerides at low levels. The proposed method is therefore effective for improving enzymatic biodiesel production.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , , ,