Article ID Journal Published Year Pages File Type
70853 Journal of Molecular Catalysis B: Enzymatic 2009 7 Pages PDF
Abstract

The ring-opening polymerization of ɛ-caprolactone catalyzed by a novel thermophilic esterase from the archaeon Archaeoglobus fulgidus was successfully conducted in organic solvents. The effects of enzyme concentration, temperature, reaction time, reaction medium, and water activity on monomer conversion and product molecular weight were investigated. Poly(ɛ-caprolactone) was obtained in almost 100% of the monomer conversion, with a number-average molecular weight of 1400 in toluene at 80 °C for 72 h. Furthermore, the Michaelis–Menten kinetic analysis showed that the enzyme had the highest affinity for ɛ-caprolactone, with a Km value of 0.093 mol/l compared with other reported lipases. The possible structural and energetic effects of the enzyme on the Km value were investigated, using molecular docking studies.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , , ,