Article ID Journal Published Year Pages File Type
7099 Biomaterials 2011 18 Pages PDF
Abstract

The seeding of a porous scaffold with stem cells is a fundamental step in engineering sizeable tissue constructs that are clinically viable. However, a key problem often encountered is inhomogeneous seeding of the cells particularly when the cells are delivered through the thickness of the scaffold. The objective of this study was to establish the quantitative relationships between the cell seeding efficiency and the initial vacuum pressure in a compact perfusion seeding device that uses the effect of differential pressure induced by vacuum to seed cells on a porous scaffold. A transient CFD solution of the fluid flow in the device was used to optimize the initial vacuum pressure for efficient cell seeding. Results indicate that the optimal initial vacuum pressure for homogenous cell seeding is approximately −20 kPa for the seeding device. This study presents a 3-D computational model that can be employed in designing and optimizing cell seeding techniques and corresponding technology.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , ,