Article ID Journal Published Year Pages File Type
713118 IFAC-PapersOnLine 2015 6 Pages PDF
Abstract

In previous works, the authors have developed a trajectory planning algorithm for spacecraft rendezvous which computed optimal Pulse-Width Modulated (PWM) control signals, for circular and eccentric Keplerian orbits. The algorithm is initialized by solving the impulsive problem first and then, using explicit linearization and linear programming, the solution is refined until a (possibly local) optimal value is reached. However, trajectory planning cannot take into account orbital perturbations, disturbances or model errors. To overcome these issues, in this paper we develop a Model Predictive Control (MPC) algorithm based on the open-loop PWM planner and test it for elliptical target orbits with arbitrary eccentricity (using the linear time-varying Tschauner-Hempel model). The MPC is initialized by first solving the open-loop problem with the PWM trajectory planning algorithm. After that, at each time step, our MPC saves time recomputing the trajectory by applying the iterative linearization scheme of the trajectory planning algorithm to the solution obtained in the previous time step. The efficacy of the method is shown in a simulation study where it is compared to MPC computed used an impulsive-only approach.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics