Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7143050 | Sensors and Actuators B: Chemical | 2016 | 7 Pages |
Abstract
In this paper, we propose a thin film yttria-stabilized-zirconia (YSZ)-based limiting current-type oxygen and humidity sensor. These sensors were fabricated from layers of thin films on thermally oxidized silicon substrates, with the intention of installing such sensors onto microheaters. Sputtered porous Pt cathode are situated beneath the YSZ films, and are designed to provide a gas diffusion layer as well as function as electrodes. The porous Pt layer exhibits good performance as a gas diffusion layer because of its small pore size. Optimized YSZ sputtering growth conditions result in in-plane densification without the presence of cracks. The temperature dependence of the oxygen sensor's level of limiting current was T â0.5. This result was attributed to the shrinkage of the extremely small pores in the gas diffusion layer. Between 450 and 550 °C, following the application of a voltage of 1.1 V, the time response measurements show a rapid response of a few seconds. The oxygen concentration and water vapor pressure correspond to the level of the limiting current at 1.1 V and 1.8 V, respectively.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Shunsuke Akasaka,