Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7143997 | Sensors and Actuators B: Chemical | 2016 | 8 Pages |
Abstract
Bisphenol A (BPA) is an important endocrine disrupter in environments, for which sensitive and selective detection methods are highly necessary to carry out its recognition and quantification. Here a novel electrochemical sensor was developed based on molecularly imprinted polypyrrole/graphene quantum dots (MIPPy/GQDs) composite for the detection of bisphenol A (BPA) in water samples. A MIPPy/GQDs composite layer was prepared by the electropolymerization of pyrrole on a glassy carbon electrode with BPA as a template. The MIPPy/GQDs composite could specifically recognize BPA in aqueous solutions, which resulted in the decrease of peak currents of K3[Fe(CN)6] at the MIPPy/GQDs) modified electrode in cyclic voltammetry (CV) and differential pulse voltammetry (DPV). There was a linear relationship between BPA concentrations ranging from 0.1 μM to 50 μM and the response value (ÎIDPV) in DPV, with a limit of detection of 0.04 μM (S/N = 3). The sensor was applied for the detection of BPA in tap and sea water samples, with recoveries of 94.5% and 93.7%, respectively. The proposed method provides a powerful tool for rapid and sensitive detection of BPA in environmental samples.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Feng Tan, Longchao Cong, Xiaona Li, Qian Zhao, Hongxia Zhao, Xie Quan, Jingwen Chen,