Article ID Journal Published Year Pages File Type
7144501 Sensors and Actuators B: Chemical 2016 6 Pages PDF
Abstract
In traditional bioanalysis with mesoporous silica nanoparticle (MSN) as carrier, fluorescence quenching by encapsulation of fluorescence molecules in the pores was generally used. In the present work, Au nanoparticle@SiO2 mesoporous silica core-shell nanoparticles (AuNP@SiO2 MSN) was synthesized, and surface plasmon resonance enhanced fluorescence localized on nanopore was observed. In-hole fluorescence enhancement by MSN for detection of adenosine 5′-triphosphate (ATP) was developed, on the base of exonuclease III (Exo III)-assisted cyclic amplification and surface plasmon resonance enhanced fluorescence localized on nanopore. Because of the autocatalytic target recycling amplification and the fluorescence enhancement, this designed protocol provided an ultrasensitive detection of ATP down to 0.1 nM level, and can be utilized into cell lysates analysis.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,