Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7145897 | Sensors and Actuators B: Chemical | 2015 | 28 Pages |
Abstract
Networked p-CuO nanowires were grown on patterned-electrode pads by the thermal oxidation of Cu layers. Vertically aligned CuO nanowires grown on adjacent round-shape electrode pads were entangled, eventually forming nanowire-nanowire junctions. The sensing properties of the networked CuO nanowires were examined for a range of oxidizing gases, such as NO2, SO2 and O2, and reducing gases, such as CO, C6H6, C7H8, and H2, and compared with those of networked n-SnO2 nanowires. The gas responses of the networked CuO nanowires to the tested oxidizing gases were inferior to those of networked n-SnO2 nanowires. In contrast, for reducing gases, the networked CuO nanowires showed comparable gas responses to the networked n-SnO2 nanowires. The results suggest that the networked CuO nanowires are more promising for the detection of reducing gases rather than oxidizing gases.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Jae-Hun Kim, Akash Katoch, Sun-Woo Choi, Sang Sub Kim,