Article ID Journal Published Year Pages File Type
7148060 Sensors and Actuators B: Chemical 2014 7 Pages PDF
Abstract
SnO2 nanoparticles-reduced graphene oxide (SnO2-rGO) nanocomposites have been successfully prepared by a facile method via hydrothermal treatment of aqueous dispersion of GO in the presence of Sn salts. The combined characterizations including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) indicate the successful formation of SnO2-rGO nanocomposites. To demonstrate the product on sensing application, gas sensors are fabricated using SnO2-rGO nanocomposites as sensing materials and investigated for detection of NO2 at low operating temperature (50 °C). It is found that SnO2-rGO nanocomposites exhibit high response of 3.31 at 5 ppm NO2, which is much higher than that of rGO (1.13), and rapid response, good selectivity and reproducibility. Furthermore, the reason for enhancing sensing performance by addition of SnO2 nanoparticles has also been discussed.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,