Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7149662 | Sensors and Actuators B: Chemical | 2012 | 8 Pages |
Abstract
We prepare core-shell type magnetic silica nanospheres (Fe3O4@SiO2) as drug carriers for cellular delivery of the widely used anticancer drug doxorubicin (DOX). The cytotoxicity of doxorubicin-loaded magnetic silica composite (DOX-Fe3O4@SiO2) on human breast cancer cells (MCF-7) are studied by dynamic quartz crystal microbalance (QCM) monitoring, cyclic voltammetry (CV) characterization, 3-(4,5-dimethylthizaol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and optical microscopic inspections, and agreeable conclusions are drawn from various methods. We find that the DOX-Fe3O4@SiO2 are able to induce cell death in a dose-dependent way and exhibit higher cytotoxicity under external magnetic field in comparison with the free DOX, suggesting the potential of the Fe3O4@SiO2 for targeting drug-delivery. The QCM sensor-based in situ/process monitoring in combination with ex situ/static analyses based on CV, MTT and optical microscopic inspections provides a reliable and informative experimental platform for investigating incubation of cells and interventions from exogenous substances.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Yaping Zhou, Yanzi Zeng, Siyu Huang, Qingji Xie, Yingchun Fu, Liang Tan, Ming Ma, Shouzhuo Yao,