Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7149750 | Sensors and Actuators B: Chemical | 2012 | 9 Pages |
Abstract
Fe-doped α-MoO3 micro-structures were fabricated by a hydrothermal method, in which the Fe doping amount was easily adjusted to be 0.3, 0.6, 0.7 and 0.9 wt.% by only increasing the reaction time. X-ray diffraction and the energy dispersive spectroscopy analyses as well as the difference in the color between the doped and undoped samples provided the evidences for the Fe doping. It was also found that an appropriate Fe doping amount was beneficial to the improvement of H2S sensing performances. The enhanced gas sensing properties of the Fe-doped α-MoO3 sensors were attributed to the small size effect, catalytic effect of Fe dopants, surface reaction dynamics, and the increase in the resistance of the doped samples.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Qiu-Yun Ouyang, Li Li, Qing-Shan Wang, Yue Zhang, Tie-Shi Wang, Fan-Na Meng, Yu-Jin Chen, Peng Gao,