Article ID Journal Published Year Pages File Type
7151811 Systems & Control Letters 2014 7 Pages PDF
Abstract
It has been recently shown in Ren et al. (2010) that by collecting noise-contaminated time series generated by a coupled-oscillator system at each node of a network, it is possible to robustly reconstruct its topology, i.e. determine the graph Laplacian. Restricting ourselves to linear consensus dynamics over undirected communication networks, in this paper we introduce a new dynamic average consensus least-squares algorithm to locally estimate these time series at each node, thus making the reconstruction process fully distributed and more easily applicable in the real world. We also propose a novel efficient method for separating the off-diagonal entries of the reconstructed Laplacian, and examine several concepts related to the trace of the dynamic correlation matrix of the coupled single integrators, which is a distinctive element of our network reconstruction method. The theory is illustrated with examples from computer, power and transportation systems.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,