Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7156809 | Computers & Fluids | 2015 | 17 Pages |
Abstract
An efficient Bubnov-Galerkin finite element formulation is employed to solve the Navier-Stokes and continuity equations in three-dimensions for the case of surface-tension dominated film flow over substrate topography, with the free-surface location obtained using the method of spines. The computational challenges encountered are overcome by employing a direct parallel multi-frontal method in conjunction with memory-efficient out-of-core storage of matrix co-factors. Comparison is drawn with complementary computational and experimental results for low Reynolds number flow where they exist, and a range of new benchmark solutions provided. These, in turn, are compared with corresponding solutions, for non-zero Reynolds number, from a simplified model based on the long-wave approximation; the latter is shown to produce comparatively acceptable results for the free-surface disturbance experienced, when the underpinning formal restrictions on geometry and capillary number are not exceeded.
Related Topics
Physical Sciences and Engineering
Engineering
Computational Mechanics
Authors
S. Veremieiev, H.M. Thompson, P.H. Gaskell,