Article ID Journal Published Year Pages File Type
7157078 Computers & Fluids 2015 7 Pages PDF
Abstract
In this paper, a time dependent one-dimensional linear advection-diffusion equation with Dirichlet homogeneous boundary conditions and an initial sine function is solved analytically by separation of variables and numerically by the finite element method. It is observed that when the advection becomes dominant, the analytical solution becomes ill-behaved and harder to evaluate. Therefore another approach is designed where the solution is decomposed in a simple wave solution and a viscous perturbation. It is shown that an exponential layer builds up close to the downstream boundary. Discussion and comparison of both solutions are carried out extensively offering the numericist a new test model for the numerical integration of the Navier-Stokes equation.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,