Article ID Journal Published Year Pages File Type
7168924 Engineering Fracture Mechanics 2018 25 Pages PDF
Abstract
A cohesive element with extended environmental degradation capability was developed and implemented into an Abaqus user element. The element uses a virgin and a fully degraded Traction Separation Law (TLS) as input. The use of the potential based PPR model enables flexibility in the softening shapes for both TSL. When the element is degraded, the TSL gradually goes from the shape of the virgin material to the fully degraded TSL shape. This transition was made with a new parameter χ that can govern a more ductile or brittle crack growth behaviour at degradation. The effect on the plastic zone due to changing the softening shape is shown, where the convex shaped softening TSL gives higher plastic dissipation and larger plastic zones than the concave and more brittle TSL. The new degradation method was evaluated against a Hydrogen Embrittlement (HE) experiment showing improved agreement with the experiment compared to the literature. The effect of different susceptibility zones at the crack tip was also investigated, showing that a uniform degradation throughout the susceptible zone is more influenced by the χ parameter than a triangular susceptible zone.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,