Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7175273 | International Journal of Refrigeration | 2018 | 37 Pages |
Abstract
The thermal conductivity and dynamic viscosity of three different combinations of metal oxide composite nanolubricant had been investigated at different nanoparticle volume concentrations (0.02 to 0.1%) and different temperatures (303-353â¯K). The prepared Al2O3SiO2, Al2O3TiO2 and TiO2SiO2 composite metal oxide nanoparticle was dispersed in Polyalkylene Glycol (PAG 46) lubricant by espousing the two-step preparation method. The thermal and viscosity experiment was performed using KD2 Pro Thermal Properties Analyzer and LVDV-III Rheometer, respectively. All the considered metal oxide composite nanolubricants were witnessed to behave as Newtonian fluids. A maximum viscosity enhancement of 20.50% recorded for Al2O3TiO2/PAG nanolubricant with 0.1% nanoparticle volume concentration and at the temperature of 303â¯K. Whereas, the highest thermal conductivity improvement recorded for Al2O3SiO2/PAG nanolubricant with 2.41% improvement at 0.1% nanoparticle concentration and temperature of 303â¯K. A new regression model to estimate the dynamic viscosity and thermal conductivity of metal oxide composite nanolubricants were proposed based on the finding obtained.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
N.N.M. Zawawi, W.H. Azmi, A.A.M. Redhwan, M.Z. Sharif, M. Samykano,