Article ID Journal Published Year Pages File Type
7176 Biomaterials 2012 10 Pages PDF
Abstract

Biodegradable and non-biodegradable polymers represent promising materials for sustained protein delivery systems. However, structural protein instabilities due to interactions with the polymer surface are often observed. Aim of the present study was to analyze and predict these instabilities by determination of adsorption pattern and extent via biomolecular interaction analysis. A new optical method based on spectral-phase interference successfully demonstrated its suitability for this new application scope. It was characterized in terms of sensitivity, reproducibility and dynamic range using bovine serum albumin (BSA) as model compound. For protein–polymer interaction studies, materials with different wettabilities and zeta potential were selected and successfully applied on the sensor chip: Glass, poly(styrene), poly(lactic acid), poly(lactic-co-glycolic acid), and poly(ethylene carbonate). Concentration dependent adsorption curves revealed two principal adsorption patterns based on the connection between BSA spreading and supply rate. This connection was stronger influenced by polymer hydrophobicity than surface charge. Association, dissociation and binding rate constants in the range from 0.15 to 34.19 × 10−6 M were obtained. Atomic force microscopy images of the films before and after adsorption confirmed the previous elaborated model. Poly(ethylene carbonate) emerged as highly promising biomaterial for protein delivery due to its favorable adsorption behavior based on low polymer–protein interactions.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,