Article ID Journal Published Year Pages File Type
7176127 Journal of Fluids and Structures 2014 14 Pages PDF
Abstract
This paper presents two previously unreported aspects of the autorotation dynamics of low aspect ratio rectangular prisms, observed during an experimental study of the dynamics of helicopter underslung loads. Low-speed wind tunnel tests of a simplified container model free to rotate on a fixed axis demonstrated (a) that autorotation rate can lock-in to a structural mode and (b) that static hysteresis in autorotation rate can occur at low speeds. Autorotation lock-in behaves in a similar manner to vortex-shedding lock-in, suggesting that a similar feedback flow process between vortex wake dynamics and body motion is operating, and may provide a partial explanation for the complex changes in behaviour of rotating slung loads at high airspeeds. Static hysteresis at low speeds results in a bifurcation diagram for autorotation which is similar to that for cross-wind galloping of a square prism, including the effects of friction and inertia. The similarity in bifurcation behaviour seems likely to indicate similar dynamics rather than flow physics, suggesting that it may be possible to apply techniques developed to model the effect of non-linear damping characteristics in galloping to the modelling of autorotation.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,