Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7178702 | Mechanics of Materials | 2014 | 17 Pages |
Abstract
In this paper, the mechanical response of incompressible particle-reinforced neo-Hookean composites (IPRNC) under general finite deformations is investigated numerically. Three-dimensional Representative Volume Element (RVE) models containing 27 non-overlapping identical randomly distributed spheres are created to represent neo-Hookean composites consisting of incompressible neo-Hookean elastomeric spheres embedded within another incompressible neo-Hookean elastomeric matrix. Four types of finite deformation (i.e., uniaxial tension, uniaxial compression, simple shear and general biaxial deformation) are simulated using the finite element method (FEM) and the RVE models with periodic boundary condition (PBC) enforced. The simulation results show that the overall mechanical response of the IPRNC can be well-predicted by another simple incompressible neo-Hookean model up to the deformation the FEM simulation can reach. It is also shown that the effective shear modulus of the IPRNC can be well-predicted as a function of both particle volume fraction and particle/matrix stiffness ratio, using the classical linear elastic estimation within the limit of current FEM software.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
Zaoyang Guo, Xiaohao Shi, Yang Chen, Huapeng Chen, Xiongqi Peng, Philip Harrison,