Article ID Journal Published Year Pages File Type
71952 Microporous and Mesoporous Materials 2016 9 Pages PDF
Abstract

•Rod shaped mesoporous carbon prepared by ultra-fast microwave assisted process.•Materials exhibit textural properties comparable with hydrothermal method.•Uniform morphology and superior textural properties result in higher CO2 adsorption.

Mesoporous carbon materials (CMK-3-T-MW) with high surface area, different pore diameters and rod shaped morphology were synthesized via nanocasting technique using the SBA-15 templates prepared by ultra-fast microwave-assisted process under static condition. The combined microwave and static approach offers the highly ordered rod shaped morphology to the SBA-15 template, which was successfully replicated into the mesoporous carbon materials. By tuning the synthesis temperature of the template, it is possible to fabricate mesoporous carbons with different pore diameters and specific surface areas. These excellent materials can be utilized for various applications and here we demonstrate their use as adsorbents for CO2 molecules. A significant enhancement in the adsorption of CO2 was achieved for the mesoporous carbon with rod shaped morphology, large pore diameter and high surface area. The adsorption capacity of CMK-3-T-MW was also compared with commercially available activated carbon, multi walled carbon nanotubes (MWCNTs) and 2D and 3D highly basic mesoporous carbon nitrides (MCNs). The CO2 adsorption capacity of mesoporous carbon with controlled morphology is 24.4 mmol/g at 273 K and 30 bar pressure which is much higher than that of mesoporous carbon CMK-3-HT (20.3 mmol/g at the same conditions) prepared by the conventional hydrothermal method, activated carbons, MWCNTs, and MCNs.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , , ,