Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7210252 | Rare Metal Materials and Engineering | 2017 | 7 Pages |
Abstract
B4C/Al MMC is one of the most potential neutron-shielding materials. The poor wettability of B4C/Al interface damages the mechanical properties. To understand the alloying (or doping) effects in improving the wettability of B4C/Al interfaces, we investigated the Al(111)/AlB2(0001) and Al(111)/TiB2(0001) interfacial structures via a combined approach of experiment and DFT calculations. We find a larger work of adhesion (Wad) on the Al(111)/TiB2(0001) than the Al(111)/AlB2(0001) interfaces. The subsequently calculated partial density of states (PDOS) of doped-diborides show fewer anti-bonding states in Al(111)/TiB2(0001) than in Al(111)/AlB2(0001), which contribute to a stronger bonding between Ti-3d and B-2p states and lead to a higher Wad and better wetting. Furthermore, we predict improved wettability of Al/B4C by V-doping, because of the fewer anti-bonding states in vanadium-boron molecular orbitals. The same approach developed in this study may be applied for general design of alloy elements to improve the interfacial wetting of alloy-semiconductor systems.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Mechanics of Materials
Authors
Wang Zhixuan, Li Qiulin, Zheng Jiyun, Liu Wei, Shu Guogang, Wu Ping, Xu Ben,