Article ID Journal Published Year Pages File Type
7239 Biomaterials 2011 12 Pages PDF
Abstract

Prevention of local infection from wound pathogens such as Staphylococci and Streptococci is crucial for tissue regeneration. N-acetyl cysteine (NAC), an anti-oxidant amino acid derivative, has anti-microbial potential against various species. This in vitro study evaluated whether NAC prevented bacterial infection of gingival fibroblasts and osteoblasts on a scaffold. N-acetyl cysteine delayed growth of Staphylococcus aureus and Streptococcus pyogenes cultured in brain heart infusion (BHI) broth for 12 h in an almost dose-dependent manner (2.5, 5.0 or 10.0 mm). The number of rat gingival fibroblasts on collagen scaffolds with bacterial co-incubation was less than 30% of that in cultures without bacterial co-incubation at day 7. However, pre-addition of NAC to the scaffold yielded a number comparable with that in culture without bacteria. Fibroblasts on the scaffold with bacterial co-incubation were small, rounded and filled with bacteria and reactive oxygen species. Pre-addition of NAC, however, resulted in fibroblasts similar to those observed in culture without bacterial co-incubation. N-acetyl cysteine completely prevented devastating suppression of alkaline–phosphatase activity and extracellular matrix mineralization in osteoblastic culture on scaffolds with bacterial co-incubation. These results indicate that NAC can functionalize a scaffold with anti-infective capabilities, thus assisting healing of soft and hard tissues.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , ,