Article ID Journal Published Year Pages File Type
7256949 Technological Forecasting and Social Change 2015 11 Pages PDF
Abstract
Heterogeneity of agents in aggregate systems is an important issue in the study of innovation diffusion. In this paper, we propose a modelling approach to latent heterogeneity, based on a few fundamental types, which avoids cumbersome integrations with not easy to motivate a priori distributions. This approach gives rise to a discrete non-parametric Bayesian mixture model with a possibly multimodal distributional behaviour. The result is inspired by two alternative theories: the first is based on the Rosenblueth two-point distributions (TPD), and the second is related to Cellular Automata models. From a statistical point of view, the proposed reduction allows for the recognition of discrete heterogeneous sub-populations by assessing their significance within a realistic diffusion process. An illustrative application is discussed with reference to Compact Cassettes for pre-recorded music in Italy.
Related Topics
Social Sciences and Humanities Business, Management and Accounting Business and International Management
Authors
, ,