Article ID Journal Published Year Pages File Type
7276501 Acta Psychologica 2018 6 Pages PDF
Abstract
In this research, university students were asked to solve arithmetic word problems constructed either with discrete quantities, such as apples or marbles, or continuous quantities such as meters of rope or grams of sand. An analysis of their brain activity showed different alpha levels between the two types of problems with, in particular, a lower alpha power in the parieto-occipital area for problems describing discrete quantities. This suggests that processing discrete quantities during problem solving prompts more mental imagery than processing continuous quantities. These results are difficult to reconcile with the schema theory, according to which arithmetic problem solving depends on the activation of ready-made mental frames stored in long-term memory and triggered by the mathematical expression used in the texts. Within the schema framework, the nature of the objects described in the text should be quickly abstracted during problem solving because it cannot impact the semantic structure of the problem. On the contrary, our results support the situation model theory, which places greater emphasis on the problem context in order to account for individuals' behaviour. On a more methodological point of view, this study constitutes the first attempt to infer the characteristics of individual's mental representations of arithmetic text problems from EEG recordings. This opens the door for the application of brain activity measures in the field of arithmetic word problem.
Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, , , , ,