Article ID Journal Published Year Pages File Type
73001 Microporous and Mesoporous Materials 2014 10 Pages PDF
Abstract

•Fabrication of three MIL-53 frameworks for use in mixed-matrix membranes.•Breathing behavior of MIL-53 in mixed-matrix membranes.•Stabilization of MIL-53-ht framework by Matrimid® in mixed-matrix membranes.•Gas separation properties of MIL-53/Matrimid® mixed-matrix membranes.

The MIL-53 metal–organic framework (MOF) is known to change reversibly from an open-pore framework (MIL-53-ht) to a closed-pore framework (MIL-53-lt) depending on the temperature, pressure, or guest molecules absorbed. Three frameworks of the additive, MIL-53-as synthesized (MIL-53-as), MIL-53-ht, and MIL-53-lt, were prepared, characterized, and combined with Matrimid® to form mixed-matrix membranes (MMMs) for gas separations. The MIL-53-ht/Matrimid® MMMs exhibited higher values of permeability compared to Matrimid® as well as an increased CO2/CH4 selectivity suggesting that the open-pore MIL-53 framework was maintained in the polymer matrix. In addition to higher permeability values, MIL-53-as/Matrimid® MMMs showed higher selectivity for gas pairs with kinetic diameters differing by ⩾0.5 Å, including H2/O2, CO2/CH4, H2/CH4, and H2/N2, suggesting the presence of excess benzene dicarboxylic acid molecules within the pores that reduced its diameter enabling the material to discriminate between smaller and larger gases. MIL-53-lt did not retain its closed-pore form in the MMM. Rather, it irreversibly converted to the open-pore form (MIL-53-ht) due to the exchange of water present in the MIL-53 pores with chloroform solvent molecules during membrane casting and to pore penetration and confinement by Matrimid® polymer chains. This finding, that a polymer matrix stabilizes a MOF pore architecture within an MMM, is significant in that the desired selectivity of a MOF-MMM system may be achievable.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , ,