Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7354852 | Insurance: Mathematics and Economics | 2018 | 10 Pages |
Abstract
In this paper, we consider Sarmanov's multivariate discrete distribution as counting distribution in two multivariate compound models: the first model assumes different types of independent claim sizes (corresponding to, e.g., different types of insurance policies), while in the second model, we introduce some dependency between the claims (motivated by the events that can simultaneously affect several types of policies). Since Sarmanov's distribution can join different types of marginals, we also assume that these marginals belong to Panjer's class of distributions and discuss the evaluation of the resulting compound distribution based on recursions. Alternatively, the evaluation of the same distribution using the Fast Fourier Transform method is also presented, with the purpose to significantly reduce the computing time, especially in the dependency case. Both methods are numerically illustrated and compared from the point of view of speed and accuracy.
Related Topics
Physical Sciences and Engineering
Mathematics
Statistics and Probability
Authors
Raluca Vernic,