Article ID Journal Published Year Pages File Type
7374926 Physica A: Statistical Mechanics and its Applications 2018 16 Pages PDF
Abstract
We consider a long-range Domany-Kinzel model proposed by Li and Zhang (1983), such that for every site (i,j) in a two-dimensional rectangular lattice there is a directed bond present from site (i,j) to (i+1,j) with probability one. There are also m+1 directed bounds present from (i,j) to (i−k+1,j+1), k=0,1,…,m with probability pk∈[0,1), where m is a non-negative integer. Let τm(M,N) be the probability that there is at least one connected-directed path of occupied edges from (0,0) to (M,N). Defining the aspect ratio α=M∕N, we derive the correct critical value αm,c∈R such that as N→∞, τm(M,N) converges to 1, 0 and 1∕2 for α>αm,c, α<αm,c and α=αm,c, respectively, and we study the rate of convergence. Furthermore, we investigate the cases in the infinite m limit. Specifically, we discuss in details the case such that pn∈[0,1) with n∈Z+ and pn≈n→∞pn−s for p∈(0,1) and s>0. We find that the behavior of limm→∞τm(M,N) for this case highly depends on the value of s and how fast one approaches to the critical aspect ratio. The present study corrects and extends the results given in Li and Zhang (1983).
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,