Article ID Journal Published Year Pages File Type
7376653 Physica A: Statistical Mechanics and its Applications 2017 19 Pages PDF
Abstract
The renormalized simplified model is proposed to investigate indirectly how the static structure factor plays an important role in renormalizing a quadratic nonlinear term in the ideal mode-coupling memory function near the glass transition. The renormalized simplified recursion equation is then derived based on the time-convolutionless mode-coupling theory (TMCT) proposed recently by the present author. This phenomenological approach is successfully applied to check from a unified point of view how strong liquids are different from fragile liquids. The simulation results for those two types of liquids are analyzed consistently by the numerical solutions of the recursion equation. Then, the control parameter dependence of the renormalized nonlinear exponent in both types of liquids is fully investigated. Thus, it is shown that there exists a novel difference between the universal behavior in strong liquids and that in fragile liquids not only for their transport coefficients but also for their dynamics.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
,