Article ID Journal Published Year Pages File Type
7380715 Physica A: Statistical Mechanics and its Applications 2014 8 Pages PDF
Abstract
The definition of complexity through Statistical Complexity Measures (SCM) has recently seen major improvements. Mostly, the effort is concentrated in measures on time series. We propose a SCM definition for spatial dynamical systems. Our definition is in line with the trend to combine entropy with measures of structure (such as disequilibrium). We study the behaviour of our definition against the vectorial noise model of Collective Motion. From a global perspective, we show how our SCM is minimal at both the microscale and macroscale, while it reaches a maximum at the ranges that define the mesoscale in this model. From a local perspective, the SCM is minimum both in highly ordered and disordered areas, while it reaches a maximum at the edges between such areas. These characteristics suggest this is a good candidate for detecting the mesoscale of arbitrary dynamical systems as well as regions where the complexity is maximal in such systems.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , , ,