Article ID Journal Published Year Pages File Type
7399287 Energy Policy 2016 10 Pages PDF
Abstract
Studying temporal patterns in emissions associated with electricity generation is increasingly important. On the supply side, there is interest in integrating renewable energy sources (solar, wind), which are known to vary daily and hourly. On the demand side, the concept of demand response is driving a need to better understand the impact of peak versus off-peak loading, with the objective of maximizing efficiency. In this study, we examine the case of electric power generation in Singapore, and aim to assess the half-hourly variation in associated average carbon dioxide emissions. Given the country's serious push for clean energy solutions and a possibility of adopting carbon trading in the future, we feel the need to address the currently existing gap in research on daily CO2 emissions patterns. By associating representative electricity generation data with the characterized fleet of power plants, half-hourly emissions are found to range between 415 and 455 kg CO2 per MW h. Marginal emission factors show a fluctuating daily pattern between 390 and 800 kg CO2/MW h. Policy makers able to work with real generation data can use this approach to understand the carbon footprint of short-term supply and demand interventions.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,