Article ID Journal Published Year Pages File Type
7408177 International Journal of Forecasting 2016 25 Pages PDF
Abstract
This study revisits the accuracy of the point and density forecasts of monthly US inflation and output growth that are generated using principal components regression (PCR) and Bayesian model averaging (BMA). I run a forecasting horse race between 24 BMA specifications and two PCR alternatives in an out-of-sample, 10-year rolling event evaluation. The differences in mean-square forecast errors between BMA and PCR are mostly insignificant but predictable. PCR methods perform best for predicting deviations of output and inflation from their expected paths, whereas BMA methods perform best for predicting “tail” events. This dichotomy implies that risk-neutral policy-makers may prefer the classical PCR approach, while the BMA approach would belong in the toolkit of a prudential, risk-averse forecaster.
Related Topics
Social Sciences and Humanities Business, Management and Accounting Business and International Management
Authors
,