Article ID Journal Published Year Pages File Type
7408224 International Journal of Forecasting 2016 9 Pages PDF
Abstract
We examine possible accuracy gains from using factor models, quantile regression and forecast averaging to compute interval forecasts of electricity spot prices. We extend the Quantile Regression Averaging (QRA) approach of Nowotarski and Weron (2014a), and use principal component analysis to automate the process of selecting from among a large set of individual forecasting models that are available for averaging. We show that the resulting Factor Quantile Regression Averaging (FQRA) approach performs very well for price (and load) data from the British power market. In terms of unconditional coverage, conditional coverage and the Winkler score, we find the FQRA-implied prediction intervals to be more accurate than those of either the benchmark ARX model or the QRA approach.
Related Topics
Social Sciences and Humanities Business, Management and Accounting Business and International Management
Authors
, , ,