Article ID Journal Published Year Pages File Type
741750 Sensors and Actuators B: Chemical 2007 8 Pages PDF
Abstract

This paper reports a physical and chemical surface modification technique to achieve a high tethering efficiency as well as controllability and coordinating bacterial cells. This technique was used to experimentally show multiple spin actuators, using the flagellar motion of AMB-1 bacteria. For physical surface modification, a polydimethylsiloxane (PDMS) pillar array, using a soft-lithography technique, was used. For chemical surface modification, a UV-crosslinked azido benzoic acid (ABA) modified surface was used. A high rate of tethering and adhesion of AMB-1 bacterial cells was achieved on the modified surface, and multiple spin actuation and motoring were observed.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , , , , , , , ,