Article ID Journal Published Year Pages File Type
743123 Sensors and Actuators B: Chemical 2009 8 Pages PDF
Abstract

A thermally oxidized TiO2 or Nb2O5 film equipped with a top Pd film electrode and a bottom Ti or Nb plate electrode (Pd/MO(n)/M, MO: oxide film, M: metal plate, n: annealing temperature (°C)) has been investigated as a diode-type H2 sensor under air or N2 atmosphere. Pd/TiO2(n)/Ti sensors showed relatively poor H2 sensing properties in air, in comparison with Pd/anodic-TiO2(n)/Ti sensors constructed with an anodized TiO2 film equipped with a top Pd film electrode and a bottom Ti plate electrode, which were reported in our previous studies. On the other hand, Pd/Nb2O5(n)/Nb sensors showed relatively larger H2 response with fast response and recovery speeds than Pd/TiO2(n)/Ti sensors in air under high forward bias conditions. A Pd/Nb2O5(450)/Ti sensor, which was fabricated by radio-frequency magnetron sputtering of Nb metal on a Ti substrate followed by thermal oxidation at 450 °C, showed the largest H2 response and relatively fast response and recovery speeds in air, among the sensors tested. In addition, H2 response of the Pd/Nb2O5(450)/Ti sensor in air was much lower than that in N2, but the logarithm of H2 response was almost proportional to the logarithm of H2 concentration in a wide range of H2 concentration (10–8000 ppm) in air, and the H2 sensitivity in air was much higher than that in N2.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,