Article ID Journal Published Year Pages File Type
743999 Sensors and Actuators B: Chemical 2011 6 Pages PDF
Abstract

One-dimensional (1D) amorphous InGaZnO4 (a-IGZO) submicron-tubes were synthesized in a method involving an electrospun polymeric fiber template and the direct RF-sputter-coating of a-IGZO films combined with subsequent calcination at 450 °C. The a-IGZO hollow fibers with a diameter of 300 nm and a shell thickness of 20–30 nm showed an amorphous structure, as confirmed by XRD and HR-TEM analyses. Gas sensors using semiconducting a-IGZO tube networks exhibited n-type gas sensing characteristics and a 3.7-fold higher gas response (Rgas/Rair = 109.5 at 2 ppm NO2) compared to (Rgas/Rair = 29.4) planar a-IGZO thin films at an operating temperature of 300 °C. The enhanced gas response of a-IGZO tubes is attributed to the greater space charge modulation depth associated with the thin shell structures and the porous networks which are readily accessible by gas.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,