Article ID Journal Published Year Pages File Type
744859 Sensors and Actuators B: Chemical 2007 6 Pages PDF
Abstract

The Lorentzian model is a powerful feature extraction technique for electronic noses. In a previous work, it was applied to single-peak transient signals and was shown to achieve lower classification error rate than other feature extraction techniques. Here, we generalize the Lorentzian model by showing how to apply it to transient signals that are comprised of more than a single peak. The model is based on a fast and robust fitting of the measured signals to a physically meaningful analytic curve. We show that this model fits equally well to sensors of different technologies and embeddings, suggesting its applicability to a diverse repertoire of sensors and analytic devices.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,