Article ID Journal Published Year Pages File Type
745364 Sensors and Actuators B: Chemical 2006 7 Pages PDF
Abstract

An interesting hydrogen sensor based on a high electron mobility transistor (HEMT) device with a Pd–oxide–In0.49Ga0.51P gate structure is fabricated and demonstrated. The hydrogen sensing characteristics including hydrogen detection sensitivity and transient responses of the studied device under different hydrogen concentrations and temperature are measured and studied. The hydrogen detection sensitivity is related to a change in the contact potential at the Pd/insulator interface. The kinetic and thermodynamic properties of hydrogen adsorption are also studied. Experimentally, good hydrogen detection sensitivities, large magnitude of current variations (3.96 mA in 9970 ppm H2/air gas at room temperature) and shorter absorption response time (22 s in 9970 ppm H2/air gas at room temperature) are obtained for a 1.4 μm × 100 μm gate dimension device. Therefore, the studied device provides a promise for high-performance solid-state hydrogen sensor, integrated circuit (IC) and micro electro-mechanical system (MEMS) applications.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,