Article ID Journal Published Year Pages File Type
7455 Biomaterials 2012 11 Pages PDF
Abstract

It is necessary to develop highly functionalized liver cell culture systems for liver tissue engineering such as bioartificial livers and liver cell chips. To maintain a high level of hepatocyte function, well-organized patterning culture systems of hepatocytes and nonparenchymal cells would be advantageous. To design the patterning culture system using these cells, cell-recognizable polymers should be useful to regulate not only the hepatocytes, but also the nonparenchymal cells. Here, we report that N-acetylglucosamine (GlcNAc)-bearing polymers are useful as nonparenchymal cell-recognizable polymers. It has previously been reported that mesenchymal cells adhered to GlcNAc-bearing polymer-coated dishes through surface vimentin. It was also observed that nonparenchymal cells expressing vimentin or desmin specifically adhered to GlcNAc-bearing polymer-coated dishes. Especially, in hepatic stellate cells (HSCs) cultured on GlcNAc-bearing polymer-coated dishes, the expression of α-smooth muscle actin as an activated HSCs marker was suppressed in long-term. Therefore, HSCs were shown to maintain a quiescent state on PVGlcNAc-coated dishes during a long-term culture. These results demonstrated that GlcNAc-bearing polymers could be beneficial to culture nonparenchymal cells such as HSCs. Our findings suggest that galactose- and GlcNAc-bearing polymers can regulate the culture of all liver cells and may be useful tools for the establishment of liver tissue engineering.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , ,