Article ID Journal Published Year Pages File Type
745658 Sensors and Actuators B: Chemical 2011 7 Pages PDF
Abstract

A novel nanocomposite, comprising of graphene sheet (GS) and ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), was developed on the glassy carbon electrode (GCE) for the simultaneous determination of hydroquinone and catechol in 0.10 M acetate buffer solution (pH 5.0). At the GS/BMIMPF6/GCE, both hydroquinone and catechol can cause a pair of quasi-reversible and well-defined redox peaks. In comparison with bare GCE and GS modified electrode, GS/BMIMPF6/GCE showed larger peak currents, which was related to the higher specific surface area of graphene and high ionic conductivity of BMIMPF6. Under the optimized condition, the cathodic peak current were linear over ranges from 5.0 × 10−7 M to 5.0 × 10−5 M for hydroquinone and from 5.0 × 10−7 M to 5.0 × 10−5 M for catechol, with the detection limits of 1.0 × 10−8 M and 2.0 × 10−8 M, respectively. The proposed method was successfully applied to the simultaneous determination of hydroquinone and catechol in artificial sample, and the results are satisfactory.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,