Article ID Journal Published Year Pages File Type
745708 Sensors and Actuators B: Chemical 2009 6 Pages PDF
Abstract

Tin oxide (SnO2) nanowires with a tetragonal structure were synthesized by thermal evaporation of tin grains at 900 °C. The obtained nanowires were doped with palladium. The morphology, crystal structure, and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires were investigated. SnO2 nanowires were approximately 30–200 nm in diameter and several tens of micrometers in length. Gas sensors based on undoped, 0.8 wt% Pd-doped, and 2 wt% Pd-doped SnO2 nanowires were fabricated. These SnO2 nanowire gas sensors showed a reversible response to H2 gas at an operating temperature of RT—300 °C. The sensor response increased with increasing Pd concentration. The 2 wt% Pd-doped SnO2 nanowire sensor showed a response as high as 253 for 1000 ppm H2 gas at 100 °C. The results demonstrated that Pd doping improved the sensor response and lowered the operating temperature at which the sensor response was maximized.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , ,