Article ID Journal Published Year Pages File Type
747235 Solid-State Electronics 2010 9 Pages PDF
Abstract
The impact of layout parameters on the steady-state thermal behavior of bipolar junction transistors (BJTs) with full dielectric isolation is extensively analyzed by accurate DC measurements and 3-D numerical simulations. The influence of the aspect ratio of the emitter stripe, as well as the consequences of device scaling, are investigated from a thermal viewpoint. Furthermore, the beneficial effect of implementing aluminum nitride (AlN) thin-film heatspreaders is examined. It is shown that the silicon area surrounding the heat source, as well as the distance to high-thermal-conductivity regions, can have a significant impact on the thermal behavior. A recently proposed scaling rule for the thermal resistance - fully compatible with advanced transistor models - is successfully applied to a series of test BJT structures provided that a simple parameter optimization is carried out. Based on this, some generally applicable guidelines are given to effectively downscale fully-isolated bipolar transistors without significantly worsening the thermal issues.
Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , ,