Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
747847 | Solid-State Electronics | 2015 | 6 Pages |
This paper highlights that cycling-induced threshold-voltage instabilities in nanoscale NAND Flash technologies display a non-negligible dependence on the background pattern of the memory array during idle/bake periods. Experimental results clearly reveal, in fact, that instabilities in a (victim) cell do not depend only on its memory state, but also on the memory state of its first neighboring (aggressor) cells. The magnitude of this new cell-to-cell interference effect, moreover, appears to depend on the memory state of the victim cell, decreasing with the increase of its threshold-voltage level. From all of the gathered experimental evidence a physical picture explaining the phenomenon is provided, which is, finally, confirmed with the help of numerical simulations.