Article ID Journal Published Year Pages File Type
749525 Solid-State Electronics 2006 8 Pages PDF
Abstract

We present a comprehensive approach of designing on-chip inductors using a CMOS-compatible technology on a porous silicon substrate. On-chip inductors realized on standard CMOS technology on bulk silicon suffer from mediocre Q-factor values partly because of the loss created by the Si substrate at higher frequencies, in addition to the metal losses. We examine the alternative of using porous Si as a thick layer isolating the Si substrate from the metallization in an otherwise standard CMOS technology. We present theoretical designs produced with full-wave Method-of-Moments simulations, verified by measurements in standard 0.18 μm CMOS technology using Al metallization. When porous Si is introduced in that technology, the same inductor metallization produced Q-factor enhancements of the order of 50%, compared to the same inductor on bulk crystalline silicon. We also produce optimized single-ended inductor designs using Cu on porous Si, in a 0.13 μm-compatible CMOS technology. The resulting Q-factors are enhanced by a factor of 2 and reach values of 30 or more in the 2–3 GHz frequency range. Even higher quality factors can be obtained in this technology when differential designs are used.

Keywords
Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, ,