Article ID Journal Published Year Pages File Type
750308 Systems & Control Letters 2014 8 Pages PDF
Abstract

This paper considers a class of optimal control problems for general nonlinear time-delay systems with free terminal time. We first show that for this class of problems, the well-known time-scaling transformation for mapping the free time horizon into a fixed time interval yields a new time-delay system in which the time delays are variable. Then, we introduce a control parameterization scheme to approximate the control variables in the new system by piecewise-constant functions. This yields an approximate finite-dimensional optimization problem with three types of decision variables: the control heights, the control switching times, and the terminal time in the original system (which influences the variable time delays in the new system). We develop a gradient-based optimization approach for solving this approximate problem. Simulation results are also provided to demonstrate the effectiveness of the proposed approach.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , ,